Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.

Identifieur interne : 001200 ( Main/Exploration ); précédent : 001199; suivant : 001201

Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.

Auteurs : Yan G. Zhao [États-Unis] ; Yunqi Wang ; Zengli Guo ; Ai-Di Gu ; Han C. Dan ; Albert S. Baldwin ; Weidong Hao ; Yisong Y. Wan

Source :

RBID : pubmed:22993204

Descripteurs français

English descriptors

Abstract

Dihydroartemisinin (DHA) is an important derivative of the herb medicine Artemisia annua L., used in ancient China. DHA is currently used worldwide to treat malaria by killing malaria-causing parasites. In addition to this prominent effect, DHA is thought to regulate cellular functions, such as angiogenesis, tumor cell growth, and immunity. Nonetheless, how DHA affects T cell function remains poorly understood. We found that DHA potently suppressed Th cell differentiation in vitro. Unexpectedly, however, DHA greatly promoted regulatory T cell (Treg) generation in a manner dependent on the TGF-βR:Smad signal. In addition, DHA treatment effectively reduced onset of experimental autoimmune encephalomyelitis (EAE) and ameliorated ongoing EAE in mice. Administration of DHA significantly decreased Th but increased Tregs in EAE-inflicted mice, without apparent global immune suppression. Moreover, DHA modulated the mammalian target of rapamycin (mTOR) pathway, because mTOR signal was attenuated in T cells upon DHA treatment. Importantly, enhanced Akt activity neutralized DHA-mediated effects on T cells in an mTOR-dependent fashion. This study therefore reveals a novel immune regulatory function of DHA in reciprocally regulating Th and Treg cell generation through the modulating mTOR pathway. It addresses how DHA regulates immune function and suggests a new type of drug for treating diseases in which mTOR activity is to be tempered.

DOI: 10.4049/jimmunol.1200919
PubMed: 22993204
PubMed Central: PMC3478428


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.</title>
<author>
<name sortKey="Zhao, Yan G" sort="Zhao, Yan G" uniqKey="Zhao Y" first="Yan G" last="Zhao">Yan G. Zhao</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yunqi" sort="Wang, Yunqi" uniqKey="Wang Y" first="Yunqi" last="Wang">Yunqi Wang</name>
</author>
<author>
<name sortKey="Guo, Zengli" sort="Guo, Zengli" uniqKey="Guo Z" first="Zengli" last="Guo">Zengli Guo</name>
</author>
<author>
<name sortKey="Gu, Ai Di" sort="Gu, Ai Di" uniqKey="Gu A" first="Ai-Di" last="Gu">Ai-Di Gu</name>
</author>
<author>
<name sortKey="Dan, Han C" sort="Dan, Han C" uniqKey="Dan H" first="Han C" last="Dan">Han C. Dan</name>
</author>
<author>
<name sortKey="Baldwin, Albert S" sort="Baldwin, Albert S" uniqKey="Baldwin A" first="Albert S" last="Baldwin">Albert S. Baldwin</name>
</author>
<author>
<name sortKey="Hao, Weidong" sort="Hao, Weidong" uniqKey="Hao W" first="Weidong" last="Hao">Weidong Hao</name>
</author>
<author>
<name sortKey="Wan, Yisong Y" sort="Wan, Yisong Y" uniqKey="Wan Y" first="Yisong Y" last="Wan">Yisong Y. Wan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22993204</idno>
<idno type="pmid">22993204</idno>
<idno type="doi">10.4049/jimmunol.1200919</idno>
<idno type="pmc">PMC3478428</idno>
<idno type="wicri:Area/Main/Corpus">001105</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001105</idno>
<idno type="wicri:Area/Main/Curation">001105</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001105</idno>
<idno type="wicri:Area/Main/Exploration">001105</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.</title>
<author>
<name sortKey="Zhao, Yan G" sort="Zhao, Yan G" uniqKey="Zhao Y" first="Yan G" last="Zhao">Yan G. Zhao</name>
<affiliation wicri:level="4">
<nlm:affiliation>Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yunqi" sort="Wang, Yunqi" uniqKey="Wang Y" first="Yunqi" last="Wang">Yunqi Wang</name>
</author>
<author>
<name sortKey="Guo, Zengli" sort="Guo, Zengli" uniqKey="Guo Z" first="Zengli" last="Guo">Zengli Guo</name>
</author>
<author>
<name sortKey="Gu, Ai Di" sort="Gu, Ai Di" uniqKey="Gu A" first="Ai-Di" last="Gu">Ai-Di Gu</name>
</author>
<author>
<name sortKey="Dan, Han C" sort="Dan, Han C" uniqKey="Dan H" first="Han C" last="Dan">Han C. Dan</name>
</author>
<author>
<name sortKey="Baldwin, Albert S" sort="Baldwin, Albert S" uniqKey="Baldwin A" first="Albert S" last="Baldwin">Albert S. Baldwin</name>
</author>
<author>
<name sortKey="Hao, Weidong" sort="Hao, Weidong" uniqKey="Hao W" first="Weidong" last="Hao">Weidong Hao</name>
</author>
<author>
<name sortKey="Wan, Yisong Y" sort="Wan, Yisong Y" uniqKey="Wan Y" first="Yisong Y" last="Wan">Yisong Y. Wan</name>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="eISSN">1550-6606</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Artemisinins (pharmacology)</term>
<term>Encephalomyelitis, Autoimmune, Experimental (immunology)</term>
<term>Encephalomyelitis, Autoimmune, Experimental (pathology)</term>
<term>Encephalomyelitis, Autoimmune, Experimental (prevention & control)</term>
<term>Inflammation (immunology)</term>
<term>Inflammation (pathology)</term>
<term>Inflammation (prevention & control)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Mice, Transgenic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (immunology)</term>
<term>T-Lymphocytes, Helper-Inducer (drug effects)</term>
<term>T-Lymphocytes, Helper-Inducer (immunology)</term>
<term>T-Lymphocytes, Regulatory (drug effects)</term>
<term>T-Lymphocytes, Regulatory (immunology)</term>
<term>T-Lymphocytes, Regulatory (pathology)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>TOR Serine-Threonine Kinases (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Artémisinines (pharmacologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Encéphalomyélite auto-immune expérimentale (anatomopathologie)</term>
<term>Encéphalomyélite auto-immune expérimentale (immunologie)</term>
<term>Encéphalomyélite auto-immune expérimentale (prévention et contrôle)</term>
<term>Inflammation (anatomopathologie)</term>
<term>Inflammation (immunologie)</term>
<term>Inflammation (prévention et contrôle)</term>
<term>Lymphocytes T auxiliaires (effets des médicaments et des substances chimiques)</term>
<term>Lymphocytes T auxiliaires (immunologie)</term>
<term>Lymphocytes T régulateurs (anatomopathologie)</term>
<term>Lymphocytes T régulateurs (effets des médicaments et des substances chimiques)</term>
<term>Lymphocytes T régulateurs (immunologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Souris transgéniques (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (physiologie)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Artemisinins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Encéphalomyélite auto-immune expérimentale</term>
<term>Inflammation</term>
<term>Lymphocytes T régulateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Signal Transduction</term>
<term>T-Lymphocytes, Helper-Inducer</term>
<term>T-Lymphocytes, Regulatory</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Lymphocytes T auxiliaires</term>
<term>Lymphocytes T régulateurs</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Encéphalomyélite auto-immune expérimentale</term>
<term>Inflammation</term>
<term>Lymphocytes T auxiliaires</term>
<term>Lymphocytes T régulateurs</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Encephalomyelitis, Autoimmune, Experimental</term>
<term>Inflammation</term>
<term>Signal Transduction</term>
<term>T-Lymphocytes, Helper-Inducer</term>
<term>T-Lymphocytes, Regulatory</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Encephalomyelitis, Autoimmune, Experimental</term>
<term>Inflammation</term>
<term>T-Lymphocytes, Regulatory</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Artémisinines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Encephalomyelitis, Autoimmune, Experimental</term>
<term>Inflammation</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Encéphalomyélite auto-immune expérimentale</term>
<term>Inflammation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
<term>Souris transgéniques</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dihydroartemisinin (DHA) is an important derivative of the herb medicine Artemisia annua L., used in ancient China. DHA is currently used worldwide to treat malaria by killing malaria-causing parasites. In addition to this prominent effect, DHA is thought to regulate cellular functions, such as angiogenesis, tumor cell growth, and immunity. Nonetheless, how DHA affects T cell function remains poorly understood. We found that DHA potently suppressed Th cell differentiation in vitro. Unexpectedly, however, DHA greatly promoted regulatory T cell (Treg) generation in a manner dependent on the TGF-βR:Smad signal. In addition, DHA treatment effectively reduced onset of experimental autoimmune encephalomyelitis (EAE) and ameliorated ongoing EAE in mice. Administration of DHA significantly decreased Th but increased Tregs in EAE-inflicted mice, without apparent global immune suppression. Moreover, DHA modulated the mammalian target of rapamycin (mTOR) pathway, because mTOR signal was attenuated in T cells upon DHA treatment. Importantly, enhanced Akt activity neutralized DHA-mediated effects on T cells in an mTOR-dependent fashion. This study therefore reveals a novel immune regulatory function of DHA in reciprocally regulating Th and Treg cell generation through the modulating mTOR pathway. It addresses how DHA regulates immune function and suggests a new type of drug for treating diseases in which mTOR activity is to be tempered.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22993204</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-6606</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>189</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>4417-25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4049/jimmunol.1200919</ELocationID>
<Abstract>
<AbstractText>Dihydroartemisinin (DHA) is an important derivative of the herb medicine Artemisia annua L., used in ancient China. DHA is currently used worldwide to treat malaria by killing malaria-causing parasites. In addition to this prominent effect, DHA is thought to regulate cellular functions, such as angiogenesis, tumor cell growth, and immunity. Nonetheless, how DHA affects T cell function remains poorly understood. We found that DHA potently suppressed Th cell differentiation in vitro. Unexpectedly, however, DHA greatly promoted regulatory T cell (Treg) generation in a manner dependent on the TGF-βR:Smad signal. In addition, DHA treatment effectively reduced onset of experimental autoimmune encephalomyelitis (EAE) and ameliorated ongoing EAE in mice. Administration of DHA significantly decreased Th but increased Tregs in EAE-inflicted mice, without apparent global immune suppression. Moreover, DHA modulated the mammalian target of rapamycin (mTOR) pathway, because mTOR signal was attenuated in T cells upon DHA treatment. Importantly, enhanced Akt activity neutralized DHA-mediated effects on T cells in an mTOR-dependent fashion. This study therefore reveals a novel immune regulatory function of DHA in reciprocally regulating Th and Treg cell generation through the modulating mTOR pathway. It addresses how DHA regulates immune function and suggests a new type of drug for treating diseases in which mTOR activity is to be tempered.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Yan G</ForeName>
<Initials>YG</Initials>
<AffiliationInfo>
<Affiliation>Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yunqi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Zengli</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Ai-di</ForeName>
<Initials>AD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dan</LastName>
<ForeName>Han C</ForeName>
<Initials>HC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldwin</LastName>
<ForeName>Albert S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Weidong</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Yisong Y</ForeName>
<Initials>YY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI097392</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037621">Artemisinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6A9O50735X</RegistryNumber>
<NameOfSubstance UI="C039060">dihydroartemisinin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9RMU91N5K2</RegistryNumber>
<NameOfSubstance UI="C031327">artemisinine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="C546843">mTOR protein, mouse</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037621" MajorTopicYN="N">Artemisinins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004681" MajorTopicYN="N">Encephalomyelitis, Autoimmune, Experimental</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006377" MajorTopicYN="N">T-Lymphocytes, Helper-Inducer</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050378" MajorTopicYN="N">T-Lymphocytes, Regulatory</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22993204</ArticleId>
<ArticleId IdType="pii">jimmunol.1200919</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.1200919</ArticleId>
<ArticleId IdType="pmc">PMC3478428</ArticleId>
<ArticleId IdType="mid">NIHMS404994</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2005 Jan 1;19(1):152-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15630024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Feb 14;299(5609):1033-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12532024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15795373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2003;21:713-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12500979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Aug 21;424(6951):957-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Dec 15;198(12):1875-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Chemother Pharmacol. 2004 May;53(5):423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Jul 17-23;364(9430):285-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15262108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Aug 15;18(16):1926-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 May 31;228(4703):1049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3887571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1986 Feb 1;136(3):949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2934482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1986 Apr 1;136(7):2348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2419430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2005 Jun;313(3):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Sep 1;175(5):3025-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2005 Nov;26(11):1352-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16225758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 Nov;6(11):1133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 Nov;6(11):1123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 11;441(7090):231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 May 11;441(7090):235-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Jul 1;177(1):566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2006 Sep;25(3):455-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 22;126(6):1121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2006 Oct 2;203(10):2271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16982811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 30;282(13):9358-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17277312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):480-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2008 Mar;153(6):1303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Mar 17;205(3):565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18283119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 1;453(7191):106-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 8;453(7192):236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18368049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 Jun;9(6):632-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Jul;10(7):769-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19483717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Jun 19;30(6):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2009 Oct;1(1):20-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19482777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Dec 1;183(11):7169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19890056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2010 Dec;42(12):916-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21106771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(12):e1001221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21170302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Apr 17;19(8):1745-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10775259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2000;18:423-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10837065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 May 26;101(5):455-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2001 Nov;15(5):763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11728338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Life Sci. 2001 Nov 21;70(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11764006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Jan 17;201(2):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15657292</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Baldwin, Albert S" sort="Baldwin, Albert S" uniqKey="Baldwin A" first="Albert S" last="Baldwin">Albert S. Baldwin</name>
<name sortKey="Dan, Han C" sort="Dan, Han C" uniqKey="Dan H" first="Han C" last="Dan">Han C. Dan</name>
<name sortKey="Gu, Ai Di" sort="Gu, Ai Di" uniqKey="Gu A" first="Ai-Di" last="Gu">Ai-Di Gu</name>
<name sortKey="Guo, Zengli" sort="Guo, Zengli" uniqKey="Guo Z" first="Zengli" last="Guo">Zengli Guo</name>
<name sortKey="Hao, Weidong" sort="Hao, Weidong" uniqKey="Hao W" first="Weidong" last="Hao">Weidong Hao</name>
<name sortKey="Wan, Yisong Y" sort="Wan, Yisong Y" uniqKey="Wan Y" first="Yisong Y" last="Wan">Yisong Y. Wan</name>
<name sortKey="Wang, Yunqi" sort="Wang, Yunqi" uniqKey="Wang Y" first="Yunqi" last="Wang">Yunqi Wang</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Zhao, Yan G" sort="Zhao, Yan G" uniqKey="Zhao Y" first="Yan G" last="Zhao">Yan G. Zhao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22993204
   |texte=   Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22993204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020